Nel precedente articolo abbiano incontrato i solitoni.
Da Wikipedia ricaviamo questa descrizione di solitone:
Non è facile definire precisamente cosa sia un solitone, in quanto si applica in ambiti fisici più svariati. Giova descrivere un semplice esempio in cui dispersione e non linearità interagiscono “cancellandosi” reciprocamente: un impulso di luce non monocromatica che attraversa un vetro. Il vetro genera dispersione delle componenti dello spettro dell’impulso incidente, cosicché ogni componente viaggia su percorsi diversi nel vetro, tali che la forma dell’onda del fascio incidente ne esce deformata. Ma se il vetro ha degli effetti non-lineari nel range di intensità del fascio luminoso (effetto Kerr), al variare dell’intensità si ha una certa variazione del coefficiente di rifrazione. Ora, se l’onda incidente ha una certa (“giusta”) intensità e forma d’onda, si può ottenere un effetto complessivo in cui l’effetto Kerr cancella esattamente la dispersione, cosicché la forma dell’impulso resta invariata nel tempo, cioè un solitone. Da un punto di vista più formale, Drazin e Johnson (1989) descrivono i solitoni come soluzioni di equazioni differenziali non lineari che:
- descrivono onde di forma permanente;
- sono localizzate, cosicché decadono o approssimano una costante all’infinito;
- possono interagire fortemente con altri solitoni, ma emergono dalle collisioni invariati a meno di uno spostamento di fase.
Alcune delle equazioni che descrivono i solitoni sono le equazioni di Korteweg-de Vries (KdV), l’equazione non lineare di Schrödinger (NLSE) e l’equazione del seno-Gordon (sine–Gordon equation). Un’equazione di Schrödinger permette un risultato particolare per cui un’onda può propagarsi in un mezzo mantenendo inalterata una funzione di ampiezza d’onda e frequenza. Le due caratteristiche d’onda sono dipendenti (in particolare inversamente correlate), l’onda muta aspetto subendo un’attenuazione/amplificazione a seconda del mezzo di propagazione, ma può sempre riprendere l’aspetto del segnale di partenza se viene a propagarsi in un mezzo analogo. L’onda può quindi percorrere un numero teoricamente infinito di chilometri senza dissipazioni. Questa conservazione dell’onda significa sia assenza di perdite di energia che assenza di perdite di informazione ed ha evidenti implicazioni tecniche sia per le trasmissioni energetiche (nessuna perdita di rendimento nella rete elettrica per effetto Joule) che informatiche/telecomunicazionistiche.
Poiché lunghezza e frequenza sono dipendenti, la fisica dei solitoni si colloca nell’ambito della fisica non lineare e dell’ottica non lineare. Due onde solitoniche che si incontrano non si sommano in un’unica onda, ma danno luogo a una variazione di fase, non del modulo. Quindi, non si compongono come forze e vettori, e a proposito si parla di onde scalari o onde longitudinali.
I solitoni nel mondo naturale
Ad esempio un fascio luminoso che, sotto particolari condizioni (temperatura del mezzo, campo elettrico applicato sul mezzo) si propaga attraverso un cristallo fotorifrattivo crea una ridistribuzione della carica che permette la modulazione dell’indice di rifrazione mediante effetto elettro-ottico. Si ottiene in questo modo, all’interno del cristallo, un profilo d’indice di rifrazione con step-index positivo tipico di una guida d’onda come una fibra ottica. La luce si propaga quindi con un modo guidato con dimensioni trasverse simili a quelle presentate nel punto di incidenza sul mezzo.
È un fenomeno tipico di alcuni fiumi come il Severn: un fronte d’onda seguito da un treno di solitoni. Altre manifestazioni nelle onde interne sottomarine che si propagano nei termoclivi oceanici.
Esistono anche dei solitoni atmosferici, come il fenomeno del Morning Glory Cloud in Australia, dove solitoni di pressione viaggianti in un piano di inversione di temperatura producono vaste nubi cilindriche.
In un altro articolo troviamo una ulteriore descrizione dei solfitino:
Due Fenomeni Apparentemente Scollegati Gettano Nuova Luce Sul Comportamento dei Solitoni